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A MULTIAXIAL FAILURE CRITERION FOR COMPOSITES *t7 - '

P. Tang
Naval Ocean Systems Center

San Diego, California

"11

ABSTRACT

This paper presents the development of a piecewise quadratic strength tensor theory for composites with
orthotropic, transversely isotropic, and isotropic material symmetries. The proposed failure criterion improves the
best available quadratic failure theory for such composites, the Tsai and Wu quadratic strength tensor theory, by
including stress terms that can reflect different failure mechanisms of the composites under tension and compression.
To demonstrate the applicability of the proposed theory to composites, extensive and good correlations are shown
between the theory and the biaxial fracture data of five composite material systems: granhite/epoxy. granhite

particulate, graphite aluminum, glass/epoxy, and organic textolite composites.

INTRODUCTION

A multiaxial failure criterion is an equation to be satisfied by the st'ess components under which failure
occurs. In general, six stress components are used to define the stress state and a failure criterion can be
geometrically viewed as a failure surface in the six-dimensional stress space. The failure surface has to be closed
[e.g. 1,2] to ensure that the material strength is finite in all directions. In addition, a failure criterion for composites
is required at least to account for the following general material characteristics: (i) volume compressibility, (ii)
differing tension and compression strengths, and (iii) orthotropic, transversely isotropic, and isotropic material
symmetries for orthotropic, transversely isotropic, and quasi-isotropic composites, respectively.

As is well-known, the Tsai-Wu quadratic strength tensor theory [1] satisfies all of the above requirements
and encompasses all other quadratic failure criteria used for composites. For a general anisotropic solid, this theory
can be witten asI

f(ok) = F i o i + Fij a i aj = I , (ij,k = ]....6), (1)

where f is a scalar function, ok is the contracted notation of the second rank stress tensor 2 , and F, and F i are the
strength tensors of rank two and four, respectively. Without loss of generality, it is assumed that

F i -- ji. (2)

'Unless otherwise indicated, the usual summation convention over a repeated index is used throughout this paper.
2 With reference to a rectangular Cartesian coordinate system (i.e., xyz or equivalently, x 1x2 x3 system): a I = a x -

02 = 0Y o3 = z 4 : rxy, 05 = 'y z . 0 6 = rzx.
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In addition, constraints (usually referred to as the stability conditions) must be imposed on the strength
tensor Fij to ensure that the material strength is finite in all directions. More specifically. Fij must be positive
definite:

Fii ij > 0 (3)

at all points o i in the six-dimensional stress space. Geometrically, Eq. (3) is a necessary and sufficien: condition to
ensure that the failure surface represented by the quadratic polynomial of Eq. (1) is closed and ellipsoidal

In the biaxial stress plane, the Tsai-Wu criterion represents a single ellipse. In general, a single continuous
ellipse cannot satisfactorily represent the biaxial data of composites in all four stress quadrants. To account for the
nonelliptical characteristics of the biaxial fracture data of composites, Chamis [31 and Rosen [4] suggested to use the
Tsai-Wu quadratic criterion with different F. (igj) for different stress quadrants. Beyond having more coefficients
for better data fit, there is no physical or mat'hematical justification [5]. Another approach to improse the Tsai-Wu
quadratic criterion for composites application was to include the cubic terms in Eq. (I) [6. 7, 8]. Here. an enormous
numbers of sixth order strength tensor components are involved that hase to be reduced by ad hoc assumptions
Moreover, having cubic stress terms, the failure surface becomes open-ended [I].

Without suffering any of these shortcomings. Tang and Kuei [e.g.. 9) improved Tsai and Wu's theor% in
correlating the biaxial strength data of (monotonous) polycrystalline graphite, which show similar nonelliptical
characteristics to composite data. Recognizing the fact that such characteristics may be due to different fracture
mechanisms being operative under different states of biaxial stresses with different combinations of tensile and
co,"pressise stresbc. [101, th,., auded :o the Tsai-Wu criterion the quadratic stress terms with the absolute value of
the linear combination of stress components. The resulting piecewise quadratic strength tensor theory can be written
as

f(a k ) z F i a i + F ij a i aj + H i a i IHj aj  I , (ij,k= 1,....6). (4)

where Hi is a second rank tensor.

The above equation holds for a general anisotropic material. They then reduced all the results pertaining to
the anisotropic material to a transversely isotropic and an isotropic graphite and dem,'nstrated good correlations
between the theory and the biaxial fracture data of graphite.

In view of such good correlations with biaxial graphite data which show similar nonelliptical characteristics
to composite data, it was proposed that the piecewise quadratic strength tensor theory be developed for
composites [11].

PIECEWISE QUADRATIC STRENGTH TENSOR THEORY

Presented below are the general results pertaining to the proposed piecewise quadratic strength tensor theory
for composites, including general anisotropic, orthotropic, transversely isotropic, and isotropic materials. The results
contain the explicit expressions for the failure criteria of materials with various material symmetries, the restrictions
imposed on the components of the strength tensors occurring in these criteria, and the geometric meaning of these
criteria.

Anisotropic Material

The proposed multiaxial failure criterion for a general anisotropic material was given in Eq. (4) with F
being assumed symmetric as shown by Eq. (2). With this assumption. there are 6 independent strength tensor
components for each of F i and Hi. and 21 for F0.. These numbers for a general anisotropic material can usually be
reduced substantially for a material having a certain material symmetry. Such reductions will be shown in the next
three subsections.

Equation (4) can be decomposed into two equations:

F i i + (F i + Hi H.) o i o j  1, (5)

for all oi with

H.* > 0. (6)

and

F i i + (F i - H i Hj ) o i j : I8 (7)
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H ioi <O . (8)

The stability conditions to ensure the closure of each of the failure surfaces represented by Eqs. (5) and (7).
respectively, are

(F i+Hi H)oi  o>0 . (9)

for all oi satisfying Eq. (6), and

(Fi -H i H) oi o > 0 , (10)

for all ai satisfying Eq. (8). Clearly, Eqs. (9) and (10) are the stability conditions required to ensure the closure of the
entire piecewise failure surface represented by Eq. (4).

Geometrically, the failure surfaces represented by Eqs. (5) and (7), respectively. with the restrictions made by
Eqs. (9) and (10) on the strength tensors Fij and Hi are two ellipsoids in the two half spaces delincd by Eqs. (6) and

ii

(8). Thus, the failure surface represented by Eq. (4) with the strength tensors F.. and H- satisfying the stability
conditions given by Eqs. (9) and (10) is a piecewise ellipsoid in the six-dimensional stress space. Hence, the proposed
quadratic strength tensor theory has been referred to as the piecewise quadratic strength tensor theory.

Orthotropic Material

For an orthotropic material with the reference coordinate planes coinciding with the planes of materi-
al symmetry, based on the invariance requirements [e.g., 12] of orthotropy material symmetry, the stress dependent
function f in Eq. (4) must be expressible as a polynomial in the seven quantities: U. 02, 03. 04

2.a4 2, 2a62. a4ac6
(or alternatively, 13). where 13 is a stress invariant given by

13:-+0 2 3 +03 +3 1(4 2 06 2) '+302(04 2 + 05 2 )+303(0 52 +06 2 )+604 5 o6 (11)

Hence, the explicit expression for the quadratic function f defined by Eq. (4) can be given in terms of the
above-mentioned quantities as

f= F1 a1 + F2 02+ F3 03+ F l l 1+ 2F I 2 0 + 2FI3  3 + F 222 + 2F 2 3 020 3 + F33 32

+F 44 o4 2+F 55 a 5 2, F66062+(H I 1 ,, H 2 o2 + H 3 a3)IH I I + H 2 o2 + H 3 aj = 1 (12)

Comparing Eq. (12) with Eq. (4), it can be seen that

F4 =F 5 =F 6 =0 , H 4 =H 5  H 6 =0 ,

F14 = F15 = F16  F24 = F25  F26 = F34 = F35 = F36 = F45 = F46 = F56 = 0 . (13)

With the above results, it is clear that there are only three independent strength tensor components for each
of Fi and H i (i.e., (F1 , F2, F3) and (HI, H 2. H3)), and only nine for Fij (i.e., F1 I, F22 F33 F44, F55, F66, F12,
F23, F13). As noted earlier, the numbers of independent strength tensor components for a general anisotropic
material has been substantially reduced due to orthotropy material symmetry.

The strength constants mentioned above are not free material parameters because they are restricted by the
stability conditions: Eqs. (9) and (10). For an orthotropic material, using Eq. (13), the independent restrictions on F ii
and H i can be obtained as

F "- H 2>0 . F22 H2>0 F + 32>0 . F44>0 . F55>0 . F66>0

(F I 5H 2 (F 22 ±: H22 1 F2 + HH2)2 >0 ,(F22 ±: H22 ( 173 3 ±: H3 ) - ti-23 -1 2 H 3)2

(F33 ± H 3 2) (F1 I ± H1
2) -(F13  H, H 2 >0 (14)

(FII 5: H 12) (F22 ±: H2 2) (F33 ±:: H3 2) + 2 (F12 ±: HI H 2 ) (F23 ± H7 H 3){ H, H 3)

-(FII ± Hl2) (F23 ± H 2 H3)
2 -(F22 ± H 2

2) (Fl3 ± H I H 3)2 -(F33 ± H 3
2) (F12 ± H I H 2)2 >0.
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Transversely Isotropic Material

For a transversely isotropic material with the x3 -axis being parallel to the axis of rotational symmetry.
based on the invariance requirements [12] of the transverse isotropy material symmetry, the funcion f in Eq. (4)
must be expressible as a polynomial in the five quantities: I - 12, 13, 03, and 052 + 062, where 11 and 12 are stress
invariants given by

I I01 +a2 + o 3 - 12-(12+02 2 +032)+2(04 2 052 +06). (15)

and 13 is the stress invariant given by Eq. (11), Thus, the quadratic function f defined by Eq. (4) can be expressed as

f=a O 11 +a, 0 +[b 0 1 2 +b I !I 03+b2 32 + b 3 12 +b 4 ( 5 2 + 6
2)]+(c o l1  c1 0 3 1c O I1 *c I c3j . (16)

A comparison of Eq. (16) with Eq. (12) using Eqs. (15) and (I I) leads to the follo%16ing results for the nonsanishing
strength tensor components:

FI = F2=a0 , F 3 =a 0 +a , HI = H2 =c0 , H3 =c0 +cl

F I I = F2 2 b0 + b3 . F3 3 
= b0 + bi + b2 + b3 - F44 = 2b3  2(F1 I - F12 ) , F5 5 

= F66 
= 2b3 + b4

F12 = b0 F2 3 = F1 3 = b0 + b 1  
(17)

2
Substituting these results into Eq. (12), the expression for f in Eq. (4) becomes
f = FI ('l + 02) + F3 c3 + FII (0 12 + 02220 2) + F33 032 + F55 (052, 062) + 2F12(al a2 - 042

+2Fi 3 (01 +o 2 )o3 +[H I (01 +02)+ H3 0 311 H 1 (01 +02)+ H3 03J = I . (18)

From Eq. (17) or Eq. (18). it is clear that there are only two independent strength tensor components for each of
Fi and Hi (i.e., (F I , F3 ) and (H 1. H3)) and only five for Fij (i.e., FI I, F3 3, F5 5, FI2, F1 3). The independent sta-
bility restrictions on these strength constants can be obtained by substituting Eq. (17) into Eq. (14) as

F1I +F 12 ±2H1
2 > , F 1I-F 12 > , F33 ±H 3

2 > .

(F33 ± H3 2 ) (FII + F 2H12) - 2(F13 ± H l H3 )2 >0 , F 55 >0 (19)

Isotropic Material

For an isotropic material, based on the invariance requirements [12] of the isc'tropy material symmetry, the
stress dependent function f defined in Eq. (4) must be expressible as a polynomial in the stress invariants 11 12. and
13 defined in Eqs. (15) and (11). In light of this and following the similar derivations of the last subsection, the
expression for f defined by Eq. (4) can be obtained as

f= F I I + FI 1 12 + F12 (121 2 ) + HI II H1 II I , (20)

with

F I =F 2 = F3 , H I = H2 =H 3 - F1 I =F 2 2 = F 33

F44 = F55= F66 = 2(FII- F12) , F12= F23:F3 .(21)

Furthermore, the independent stability conditions on the four independcnt strength tensor components (i.e., F I, HI.
F, I' and F12 ) for an isotropic material are

F1 +F12± H 2 >0 ,Ff I - Fill -> FlI + "1)(F1I + -1 + 2 142 - ?(F12 -HI , )2 '-2)

General Remarks

Along with the developments made so far, the following should be clear:

(I) The numbers of independent strength tensor components for anisotropic, orthotropic, transversely
isotropic, and isotropic materials, respectively are 33. 15, 9, and 4 in the proposed theory and 27. 12,
7, and 3 in the Tsai-Wu theory.

(2) When Hi (i -I ... ,6) are all vanishing, the proposed theory degenerates into the Tsai-Wu theory and
various results obtained in this section reduce to the corresponding results for Tsai and Wu's theory.



(3) In the six-dimensional stress space, the proposed criterion represents a piecewise ellipsoid made of
two ellipsoids in two half spaces, whereas the Tsai-Wu criterion represents a single ellipsuid.

PROPOSED BIAXIAL FAILURE CRITERION

To facilitate the correlations of the proposed theory with the biaxial fracture data on composites, results
obtained in the last section for a general multiaxial stress state are reduced in this section for a biaxial stress state:

of 0, 039002 = 04 = 5 =06 =0 . (23)

Anisotropic Material

Substituting Eq. (23) into Eq. (4), we obtain

f = F! al + F3 03 + FI 12 0 2 + F 2 + 2F13 01 03 + (HI 1l + H3 °3) 1 HIa + H3 ° =I (24)

which is the desired biaxial failure criterion for an anisotropic material.

Utilizing Eq. (24), the stability conditions on the seven strength constants (F1 , F3; F1 I" F33 , F1 3 ; 1H 1. H3 )
appearing in Eq. (24) can be obtained as3

F1 I ± H1
2 >0 , (F1 1 ± H 1

2) (F 33
-±H 3

2 )-( F 13 ± H1 I H 3)2>0 (25)

which are a subset of the stability conditions given b Eqs. (9) and (10) for a general multiaxial stress state.

Geometrically, Eq. (24) with the strength constants satisfying the stability conditions given by Eq. (25)
represents a piecewise ellipse in the biaxial stress plane. This piecewise ellipse is made of a single ellipse represented
by

f=F1 ( I +F 3o 3 +(F, I+ H1 2) 0 2 + ( F 3 3 + H3 2)o 3 2 + 2( F 13 +" H I 1 3) o 03 = , (26)

in the half plane

H I a]+ H3 o3 0 , (27)

and another single ellipse represented by
f =-F 1o 1 +F 3o 3 +(F I -H 1

2)a 1
2 +(F 3 3 - H3

2 ) ( 3
2 +2(FI 3 -H 1 H3) ol 3 = 1 (28)

in the half plane

HI a + H3 o3 <0 . (29)

Orthotropic and Transversely Isotropic Materials

The biaxial failure criteria for an orthotropic material and a transverse!y isotropic material can be obtained
by substituting Eq. (23) into Eqs. (12) and (18), respectively. They are found to be identical to Eq. (24) for an
anisotropic material. Consequently, the stability conditions on the seven strength constants (F1 , F3: F1 I' F33. F13;
H II H3) for an orthotropic or a transversely isotropic material are also identical to Eq. (25) for an anisotropic
material.

Isotropic Material

Substitution of the biaxial stress condition given by Eq. (23) into Eq. (20) and utilization of Eqs. (I1) arid
(15) lead to the biaxial failure criterion for an isotropic material as

f= FI (aI + a 3) + FII (;12 , G32) + 2FI2 o1 03 + H I (o I + o 3)1 HI (aI + o3)1 I.(26)

Using Eq. (26), the stability conditions on the four strength constants (F1 : F1 I F1 2; H1) appearing in Eq. (26) can
be obtained as

FII + F 12 ± 2H 1
2 >0 , FI - F 12 >0 (27)

3Alternatively, Eq. (25) I can be replaced by F3 3 3 H3
2 > 0.



which constitute only a subset of the stability conditions given by Eq. (22) for a general multiaxial stress state.

Remarks on Comparison with Tsai-Wu's Biaxial Criterion

To facilitate the comparison between the proposed and the Tsai-Wu biaxial failure criterion in correlating
the biaxial fracture data of composites, the following remarks are collected here:

(I) As compared with the Tsai-Wu's biaxial criterion, the proposed biaxial criterion contains only 2, 2,
and I additional strength constants for orthotropic, transversely isotropic, and isotropic materials.
respectively.

(2) As remarked earlier, when all the components of the s.rength tensor H i are set vanishing, all the
resuhs obtw,.acd in this section degenerate into those pertaining to the Tsai-Wu theory.

(3) In the biaxial stress plane, the proposed biaxial criterion represents a i:ecewise ellipse consisting of
two ellipse in two half planes, whereas the Tsai-Wu's biaxial criterion represents a single ellipse.

CORRELATIONS WITH BIAXIAL FRACTURE DATA OF COMPOSITES

To demonstrate the applicability of the proposed piecewise quadratic strength tensor theory to composites,
comparisons are made in this section between the proposed theory and the available biaxial fracture data on
composites. These data cover a wide spectrum of composite material systems: graphite/epoxy [ 13), graphite
particulate [10], graphite/aluminum [14), glass/epoxy [15, 16, 17), and organic fiber-reinforced textolite [18]. They
were all obtained from tubular specimens subjected simultaneously to an axial load and internal and/or external
fluid pressure, except those on graphite/aluminum unidirectional composite which were obtained from flat
cruciform specimens under biaxial in-plane loadings. In correlating the data for tube specimens, the circumferential
(i.e., tangential) direction will be designated as the direction for x (i.e., xI) axis and the direction along the axis of
the tube as the direction for z (i.e., x3) axis. For the flat cruciform specimens, the fiber and its perpendicular
directions will be identified as the directions for x and z axis, respectively.

Also, to show the improvements of the proposed theory over the Tsai-Wu theory, comparisons are made
between the two theories. In these comparisons, Eq. (26) of the proposed theory and its degenerated version for the
Tsai-Wu theory are used for [0/90/0/90]s graphite/epoxy laminate which is treated as isotropic material, while Eq.
(24) of the pioposed theory and its degenerated version for the Tsai-Wu theory are used for other composites which
are either transversely isotropic (graphite particulate) or orthotropic (the rest of composites).

Tables I and 2, respectively, present the strength constants 4 for the five composite systems, least-square-
fitted by the above-mentioned equations pertaining to the Tsai-Wu theory and the proposed theory, without
violating the appropriate stability restrictions on the fitted strength constants.

Figures I to I I present the correlations of the proposed theory and the Tsai-Wu theory with the biaxial
fracture data of various composites:

I. 0-deg graphite/epoxy lamina [13] (Fig.1);

2. [0/90/0/90]s graphite/epoxy laminate [13] (Fig. 2);

3. JT-50 graphite-based refractory particulate composite with the longitudinal axis of the test specimens
being parallel to the symmetry axis of the material [10] (Fig. 3);

4. Unidirectional graphite/aluminum composite [14] (Fig. 4) ;

5. Satin- and linen-weave glass-reinforced plastics with the fill direction of the material coincident with
the direction of the tubular test piece axis [15] (Figs. 5, 6) .

6. Circumferentially wound unidirectional glass/epoxy laminate [16) (Fig. 7);

7. [90/1 ±30/90) glass fiber reinforced laminate [16] (Fig. 8) ;

8. Cross-ply glass/epoxy laminate with the first and the third layers being oriented along the
circumference and the second layer along the tube axis [17] (Fig. 9) ;

9. Helically wound glass/epoxy laminate with the fiber reinforcement orientation at an angle of ±450 to
the tube axis [17] (Fig. 10) ;

10. Organic textolite with the fill direction of the reinforcing fabric coincident with the tube axis direction
(181 (Fig. f1).

41n presenting the strength constants for the quasi-isotropic graphite.'epoxy laminate, the results, F 12 = F1 3, of
Eq. (21)14, 15 have been used.



For the data presented in Figs. 1, 5, 6, 7, 10, and I1, which possess elliptical characteristics, both theories
"correlate equally well. For the data presented in Fig. 2, the proposed theory correlates better than the Tsai-Wu
theory and predicts significantly different results, at least in the third (i.e., compression-compression) stress quadrant,
from the Tsai-Wu theory. For the data presented in Figs. 3, 4, 8, and 9, which possess nonelliptical chracteristics, the
proposed theory shows significant improvements over the Tsai-Wu theory in the correlations.

CONCLUSIONS

Good correlations between the theory and the biaxial fracture data have been demonstrated for all five
composite material systems: graphite/epoxy, graphite particulate, graphite/aluminum, glass/epoxy, and organic

textolite. Furthermore, significant improvements of the proposed theory over the Tsai-Wu theory have been shown
for the cases where the biaxial data have nonelliptical chracteristics. From these results, the following conclusions
are reached:

I. The proposed piecewise quadratic strength tensor theory is applicable to the composites.

2. The proposed theory can significantly improve Tsai-Wu's quadratic strength tensor theory for
composite applications.
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Table I Fitted Strength Constants of the Tsai-Wu Criterion

FF F3  FII F33 F13

COMPOSITE 3 1(MPa}
-1  10-3 MPa)

1  10 5(MPa)
2  10-5 IMPa)

-2  lu 5(MPa)
"Z

Graphite: Epoxy Lamina -0.4877 100958 0.1292 11.0444 0.0386

[09/0,, 9

Graphite/ Epoxy Laminate 10332 1.0332 0.5795 0.5795 0.4154

JT-50 Graphite Particulate 6.0624 4.9071 5.9825 5.3231 -20747

Graphite, Aluminum Lamina -0.1357 4.3759 0 1478 2.9786 -00137

Satin-Weave Glass Epoxy -1.1370 -0.7599 0.8483 L 6218 -00472

Linen-Weave Glass, Epoxy -1.9144 -1.0819 1.2304 2.2617 0.1359

Unidirectional
Glass, Epoxy Laminate -0.3311 -15.2337 0.1076 16.77?0 -0.4108

[90 ±30, 901
GlassfEpoxy Laminate -2.0058 -0.8168 2.0058 0.5241 -0.5283

Cross-ply
GlassEpoxy Laminate -1,7605 -2.2612 0.4670 1.0530 -0.1013

Helically Wound
Glass,, Epoxy Laminate .1.2940 -0.3224 4.3373 4.7796 -4.2193

Organic Textolite -2.5515 -3.1901 1.3469 0.6906 -0.2332

Table 2 Fitted Strength Constants of the Proposed Theory

CONSTANT FI F3  F11  F 3 3  F1 3  HI H 3

COMPOSITE 10
3

(MPa) -  10-3(MPa) -  
10

5 (MPa) 2  
10-

5
(MPa)

-2 10- 5 (MPar)2  
10-(MPa) 10-3(MPa)

-I

Graphite: Epoxy Lamina -0.9756 -0.9734 0 1280 17.9832 0.4822 0.7148 11.4688

(0 90:0,901
Graphite Epoxy Laminate 3.0015 3.0015 0.6029 0.6029 -0.2551 -1.9927 -1.9927

JT-50 Graphite Particulate 11.0493 -5.9855 7.7056 61.6362 -12.2767 -4.8345 24.8041

Graphite, Alurninum Lamina -0.4212 -3.8186 0.3012 12.6053 0.3191 0.4853 11.1480

Satin-Weave Glass Epoxy 0.4849 0.0337 0.9957 1.6064 0.1791 -2.3382 -1.4630

Linen-Weave Glass Epoxy -0.2135 -0-0016 1.4293 2.2845 0.4558 -25631 2.0856

Unidirectional
Glass Epox Laminate -0.7923 -21.2772 0 1154 15 1689 -0.5245 0.5136 7.5298

[90 ±30 90)
Glass. Epox) Laminate 2.7866 -0.7685 6.1122 0.4205 0 4778 .7.558 0.14X2

Cross-ply
Glass Epoxy Laminate 1.1279 -2.9361 2.2386 0.8883 -0.3208 4.6894 0.82t"

Hehcally Wound
Glass Fp,,vy Laminate 1 2840 -0.3224 4.3373 4 7796 42193 0 9801 1.3922

Organic Textolite -2.0000 -3.1829 1 4021 0.6739 0 2452 I 4209 0 232 )
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